Ambiances thermiques dans les chantiers de creusement des tunnels

Évaluation des risques et mesures de prévention
CONTACTS

Pascal Sergi : Ingénieur Conseil BTP | Pilote de l’action régionale Tunnels
Tél. 04 79 70 76 06 - pascal.sergi@carsat-ra.fr

Michel Lebrun : Ingénieur Responsable CIMPA
Tél. 04 73 42 70 10 - michel.lebrun@carsat-auvergne.fr
TABLE DES MATIÈRES

PRÉAMBULE .. 5

TYPOLOGIE DES CHANTIERS – ACTIVITÉS OBSERVÉES ... 6

CARACTÉRISATION DE LA SITUATION DE TRAVAIL ... 10

SYNThÈSES DES OBSERVATIONS .. 12

Chantiers de creusement traditionnel à l’explosif .. 12
Chantier de creusement au tunnelier .. 13
Chantier d’Aménagement d’une usine hydroélectrique souterraine ... 14
Chantier d’Aménagement d’une caverne d’assemblage d’un tunnelier en galerie profonde .. 14
Chantiers de Soutènement .. 15
Cellule de survie .. 15

RECOMMANDATIONS .. 17

Creusement par méthode traditionnelle .. 17
Creusement au tunnelier .. 18
Chantier d’aménagement de caverne souterraines .. 19
Mise en place de Soutènement .. 19
Cellule de survie .. 20
Organisation du travail .. 20
Commentaire sur l’arrêté du 14–11-1989 .. 21

BIBLIOGRAPHIE .. 22
La Carsat Rhône-Alpes mène depuis plusieurs années une action visant l’amélioration des conditions de travail sur les chantiers de creusement de tunnels.

Dans ce cadre, la Carsat Rhône-Alpes est associée au Centre Inter-régional de Mesures Physiques Auvergne (CIMPA) de la Carsat Auvergne pour réaliser des campagnes de caractérisation des ambiances physiques de travail sur ces chantiers.

Ces travaux déjà réalisés entre 2011 et 2013 en acoustique, vibration et éclairage ont donné lieu à la publication d’une brochure de bonne pratique de prévention, par la Carsat Rhône-Alpes.

Une nouvelle campagne a été lancée en 2015 dans le but de caractériser les ambiances thermiques régnant aux postes de travail des chantiers de creusement et d’aménagement de tunnels dans le but de définir les bonnes pratiques de prévention.

Les mesurages réalisés ont consisté à évaluer, pour les activités les plus représentatives de l’activité de travaux en souterrain, les risques liés à l’ambiance thermique.

Des mesures de prévention sont proposées afin de réduire l’exposition des salariés aux risques encourus.

Jérôme Chardeyron
Ingénieur Conseil Régional Carsat Rhône-Alpes

Philipppe Trouvet
Ingénieur Conseil Régional Carsat Auvergne
TYPOLOGIE DES CHANTIERS – ACTIVITÉS OBSERVÉES

La campagne de caractérisation des ambiances thermiques a porté sur 7 chantiers répartis sur 4 sites suivis par la Carsat Rhône-Alpes :

- 3 chantiers de creusement par méthode traditionnelle (à l’explosif),
- 1 chantier de creusement au tunnelier,
- 3 chantiers d’aménagements souterrains caverne d’assemblage d’un tunnelier, aménagement d’une usine hydroélectrique souterraine, soutènement par coffrage béton d’une galerie.

Les interventions effectuées sur ces chantiers ont permis de caractériser l’ambiance thermique de nombreuses situations de travail.

Pour les chantiers par méthode traditionnelle :

POSE DE TREILLIS SUR LES PAROIS ET LA VOUTE DES GALERIES
Pause de treillis – Tunnel LTF SMP4

PROJECTION DE BÉTON EN FRONT DE TAILLE
Projection de béton – Tunnel du Chat

Projection de béton – Tunnel LTF SMP4
Ambiances thermiques dans les chantiers de creusement de tunnels
MISE EN PLACE DES EXPLOSIFS
Mise en place des explosifs – Conduite forcée de Passy
Mise en place des explosifs – Tunnel LTF SMP4

TIR ET VENTILATION DU BOUCHON DE TIR
Evacuation du bouchon de tir – Tunnel LTF SMP4

MARINAGE
Marinage – Conduite forcée de Passy
Marinage – Tunnel du Chat
Marinage – Tunnel LTF SMP4
AMBIANCE EN GALERIE

Galerie – Tunnel du Chat

Ambiances thermiques dans les chantiers de creusement de tunnels

Galerie – Tunnel LTF SMP4
COFFRAGE DE GALERIE ET DE RAMEAUX
Coffrage de galerie – Tunnel du Chat
GÉNIE CIVIL EN ESPACE SOUTERRAIN

Chantier centrale électrique souterraine – Centrale hydroélectrique de Livet et Gavel

POUR LES CHANTIERS AU TUNNELIER :

TRANSPORTEUR

Véhicules Multi Services – Conduite forcée de Livet et Gavel

ARRIÈRE DU TUNNELIER, AU NIVEAU DE L’ACCÈS AU TRANSPORTEUR

Arrière du tunnelier – Conduite forcée de Livet et Gavel

Ambiances thermiques dans les chantiers de creusement de tunnels
POSTE DE TRAVAIL : RALLONGE DE BANDE TRANSPORTEUSE, PRÉLÈVEMENTS D’ÉCHANTILLON, ÉLECTRICIEN

Zone rallonge de bande transporteuse, Zone de prélèvements d’échantillon, et atelier électrique – Conduite forcée de Livet et Gavel

CABINE DE PILOTAGE

Cabine de pilotage du tunneler – Conduite forcée de Livet et Gavel
RÉFECTOIRE
Réfectoire – Conduite forcée de Livet et Gavet

CHEMINEMENT EN GALERIE
Galerie – Conduite forcée de Livet et Gavet

A L’AVANT DU TUNNELIER, PRÈS DE LA TÊTE DE COUPE
Tunnelier – Conduite forcée de Livet et Gavet
CARACTÉRISATION DE LA SITUATION DE TRAVAIL

Ces indices permettent de caractériser la situation thermique à partir du calcul des échanges de chaleur entre l’individu et son environnement.

Le bilan thermique qui en résulte permet de déterminer si l’individu est en situation thermique neutre (bilan équilibré), autrement dénommée « situation de confort », ou en situation de déperdition de chaleur (bilan négatif) ou d’accumulation de chaleur (bilan positif).

Dans les deux dernières situations, l’indice PMV-PPD permet de graduer le niveau d’inconfort et l’indice PHS fournit une analyse en niveau de contrainte notamment basée sur les déperditions hydriques de l’individu et l’augmentation éventuelle de température interne du corps, en relation avec des limites physiologiques communément définies pour ces deux paramètres.

Finalement les indices PMV-PPD et PHS permettent de relier les paramètres d’ambiance, d’activité et de comportement à des modèles physiologiques qui fournissent une analyse des causes des risques liés à l’ambiance thermique.

Les caractérisations de la situation en fonction de la valeur de ces indices sont indiquées dans le tableau ci-dessous.

<table>
<thead>
<tr>
<th>Norme ISO 7730</th>
<th>Confort thermique PMV-PPD</th>
<th>Norme ISO 7933</th>
<th>Contrainte thermique Sudation requise</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 < PMV < 0,5</td>
<td>Confort respecté : mois de 10 % d’insatisfaits</td>
<td>PHS 1</td>
<td>Ni gêne, ni risque pour la santé</td>
</tr>
<tr>
<td>0,5 < PMV < 1</td>
<td>Inconfort léger : entre 10 et 25 % d’insatisfaits</td>
<td>PHS 2</td>
<td>Gêne sans risque pour la santé</td>
</tr>
<tr>
<td>1 < PMV < 1,5</td>
<td>Inconfort : entre 25 et 50 % d’insatisfaits</td>
<td>PHS 3</td>
<td>Contrain te à long terme : gêne et risque pour la santé après plusieurs heures d’exposition</td>
</tr>
<tr>
<td>1,5 < PMV < 2</td>
<td>Inconfort Chaud : entre 50 et 77 % d’insatisfaits</td>
<td>PHS 4</td>
<td>Contrain te à court terme : risque pour la santé après 30 à 120 minutes d’exposition</td>
</tr>
<tr>
<td>2 < PMV < 2,5</td>
<td>Inconfort très Chaud : entre 77 et 93 % d’insatisfaits</td>
<td>PHS 5</td>
<td>Contrain te immédiate : risque pour la santé même pour des expositions très courtes</td>
</tr>
<tr>
<td>2,5 < PMV < 3</td>
<td>Inconfort excessivement Chaud : entre 93 et 100 % d’insatisfaits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMV > 3</td>
<td>Contrain te thermique chaude</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
D'autres indicateurs sont parfois utilisés pour tenter de fixer des limites d'exposition.

On peut citer parmi ceux-ci la température humide. Il s'agit d'une température mesurée sur un thermomètre recouvert d'une gaine maintenue humide. C'est une mesure très simple à réaliser, mais qui est très peu discriminante vis-à-vis de la situation thermique de l'individu.

La mesure de la température humide ne tient en effet compte que de la température et de l'humidité de l'air ambiant. Elle ne prend pas en compte l'intensité des courants d'air, ni les sources de chaleur rayonnantes. Or ces deux derniers facteurs sont des paramètres très influents sur le confort et la contrainte thermique en ambiance chaude.

Chose plus ennuyeuse encore, la mesure de la température humide ne tient pas compte des conditions d'activité, notamment niveau de métabolisme et habillement des opérateurs.

En l'absence de la prise en compte de ces facteurs, la température humide ne peut pas être reliée à une caractérisation physiologique de la situation d'un individu.

La température humide ne peux donc pas constituer à elle seule un indice de contrainte permettant de juger de l'acceptabilité d'une situation de travail quelconque. Elle ne peut pas servir d'indicateur de dangerosité de la situation permettant de limiter la durée d'exposition.
Quelle que soit la phase de travail en cours, on observe une augmentation de la température et de l’hygrométrie absolue lorsque l’on se rapproche du front de taille.

L’augmentation de la température est due :
- à l’éloignement du point d’observation par rapport à l’entrée de la galerie,
- à la profondeur de la galerie,
- à la couverture de la galerie,
- à l’activité (engins essentiellement)

L’augmentation de l’hygrométrie absolue résulte :
- des infiltrations d’eau à travers la roche
- de l’activité productrice d’eau :
 - projection de béton
 - foration
 - utilisation de la brumisation lors du marinage

Cet accroissement de la sévérité des conditions d’ambiance se traduit directement sur les indices de confort : l’inconfort s’accroît au fur et à mesure que l’on s’approche du front de taille.

En galerie, au-delà d’une trentaine de mètre du front de taille, l’inconfort n’est que très léger, voire inexistant, ceci quel que soit la phase de travail.

L’inconfort n’est en fait réellement significatif qu’au niveau du front de taille lors des opérations de pose de treillis, projection de béton, mise en place des explosifs ainsi que dans certaines conditions en phase de foration et de marinage.

Dans les trois premières phases, l’activité physique plus élevée conduit à accentuer l’inconfort.

Les inforts’ observés sur les plateformes des poseurs d’explosifs, sont également en partie causés par une température plus élevée résultant probablement d’une ventilation insuffisante du front de taille lors de cette phase de travail (gaine soufflante placée trop en retrait).

Dans les phases de foration et de marinage, c’est principalement l’augmentation de la température (due au fonctionnement des engins) et de l’hygrométrie (utilisation de l’eau pour la foratrice, arrosage des déblais, brumisation éventuelle) qui conduisent à l’inconfort.

Pendant le marinage, il convient de noter que les systèmes de climatisation des engins permettent de conserver des conditions thermiques très acceptables.

En l’absence de climatisation, cela n’est plus le cas.

La seule situation rencontrée présentant une situation à risque selon l’analyse effectuée avec le calcul de Stress Thermique Prévisible (Norme « PHS » NF EN ISO 7933) : est ainsi le poste de conduite d’une chargeuse ne disposant pas d’une cabine fermée et climatisée en phase de marinage. Cette situation expose le conducteur de l’engin à des conditions thermiques dont la sévérité augmente rapidement au cours de la phase de travail et atteint une contrainte incompatible après 1h à 1h30 d’activité.

En ce qui concerne les engins disposant d’une cabine fermée et climatisée, il convient de remarquer que les conducteurs étaient libres de gérer eux-mêmes la température de leur cabine.

\(^1\) Au sens de la norme ISO 7730 – PMV PPD
La situation observée résulte donc du réglage adopté en liaison avec la puissance frigorifique disponible.

La température plus élevée observée en galerie qu’en extérieur est cependant indéniablement responsable d’une augmentation notable de la température des cabines des engins.

Toutefois, la plupart des situations rencontrées ne présente pas une situation à risque selon l’analyse effectuée avec le calcul du Stress Thermique Prévisible (Norme « PHS » NF EN ISO 7933).

On remarque encore que les évolutions de température et d’humidité enregistrées sont très peu corrélées aux variations des conditions extérieures : Ces évolutions sont imposées par les conditions d’échange dans la galerie et par l’activité.

Chantier de creusement au tunnelier

On observe une augmentation de la température et de l’hygrométrie absolue le long du tunnelier par rapport aux conditions extérieures :

Le point le plus chaud se situe devant la cabine de pilotage, le point le plus humide, dans la zone mécanicien.

L’augmentation de la température est due :

- au confinement de la galerie,
- à la couverture de la galerie,
- à l’activité du tunnelier.

L’augmentation de l’hygrométrie absolue résulte :

- des infiltrations d’eau à travers la roche,
- de l’activité de foration utilisatrice d’eau.

La sévérité des conditions d’ambiance se traduit directement sur les indices de confort.

En dehors du véhicule VMS et des cabines climatisées (cabine de pilotage et réfectoire), l’ambiance thermique produit :

- un inconfort marqué (entre 25 et 50 % d’insatisfaits) pour le cheminement sur la passerelle de la galerie, à l’arrière du tunnelier

L’analyse par le PHS montre également que la plupart des emplacements de travail sur le tunnelier se classe dans la seconde catégorie climatique « Gêne sans risque pour la santé ». A ces postes de travail, la contrainte commence à être significative : elle se traduit par des pertes hydriques importantes (350 à 400 g/h) et implique notamment l’obligation d’une réhydratation régulière (200 ml toutes les 30 mn).

Toutefois, aucune des situations rencontrées ne représente une situation à risque selon l’analyse effectuée avec le calcul de Stress Thermique Prévisible (Norme « PHS » NF EN ISO 7933).

On remarque encore que les évolutions de température et d’humidité enregistrées sont très peu corrélées à l’évolution des conditions extérieures.
Dans la centrale souterraine, les conditions de température et d’hygrométrie sont quasiment semblables aux conditions extérieures.

Ceci est logique compte tenu de la faible profondeur de la centrale souterraine et de la ventilation présente dans les espaces ayant été l’objet de nos mesurages.

Au niveau du chantier de la centrale souterraine, l’inconfort est modéré :

- 2/3 des emplacements ayant faits l’objet de mesures satisfont aux conditions de confort thermique (moins de 10% d’insatisfait)
- 1/3 exposent à un inconfort léger (10 à 25% d’insatisfaits) : Etayage du plancher du Niv1 et Coffrage zone turbines.

On observe une augmentation de la température et de l’hygrométrie absolue lorsque l’on s’éloigne de l’entrée de la galerie.

Toutefois, cette tendance s’inverse, pour la température au-delà du PM2100 et pour l’hygrométrie au-delà du PM1500.

Cette inversion est due à la combinaison de plusieurs facteurs :

- l’augmentation naturelle de la température avec la profondeur,
- la configuration du soufflage : l’air neuf est soufflé au niveau de la caverne d’assemblage du tunnelier et ressort par toute la section de la galerie d’accès,
- la taille de la caverne : les dimensions importantes de la caverne d’assemblage du tunnelier produit une très grande surface d’échange entre l’air et la roche. En l’absence d’activités produisant des dégagements de chaleur importants, l’air de la caverne est donc en équilibre avec la température du terrain à cette profondeur,
- la présence d’équipements produisant de la chaleur à certains endroits de la galerie d’accès.

Dans la caverne, située au bout d’une galerie d’accès de plus de 2km, la température est extrêmement stable et quasiment indépendante des conditions climatiques extérieures.

Les conditions d’ambiance se traduisent directement sur les indices de confort.
La situation est la plus sévère aux alentours des PM1500 et PM2100 où l’inconfort est nettement sensible avec un taux d’insatisfait compris entre 25 et 50%.

Une gêne marquée est par ailleurs mise en évidence par l’analyse basée sur la norme PHS au PM2100 (catégorie climatique 2).

Au niveau de la caverne, l’inconfort est modéré (10 à 25% d’insatisfaits), notamment en raison d’une adaptation vestimentaire des opérateurs intervenants à cet endroit (tenue un peu plus légère).

Toutefois, pour une activité plus importante des opérateurs (comme cela peut être le cas lors des opérations d’assemblage du tunnelier), ou pour la mise en service d’équipements dégageant plus de chaleur (fonctionnement du tunnelier) la situation sera plus sévère.

La contrainte thermique sera renforcée dans la phase de creusement au tunnelier par l’exiguité de la galerie autour du tunnelier qui réduira les possibilités de ventiler efficacement l’environnement de travail.

Chantier de soutènement

Sur le chantier de mise en place du soutènement, les conditions de confort thermique sont presque partout respectées.

Au niveau des chantiers de coffrage (galerie et rameaux) la situation est marquée par un très léger inconfort, dû principalement à une activité physique un peu plus importante sur ces chantiers et des températures localement un peu plus élevées.

Toutefois, aucune des situations rencontrées ne représente une situation à risque selon l’analyse effectuée avec le calcul de Stress Thermique Prévisible (Norme « PHS » NF EN ISO 7933).

Nota : cellule de survie

La fonction d’une cellule de survie implantée en galerie d’un chantier de creusement de tunnel est de permettre aux opérateurs de se réfugier à l’abri d’une ambiance dangereuse en cas de sinistre empêchant une évacuation immédiate en sécurité, ceci en attendant l’intervention d’une équipe de secours.
Ces cellules de survie sont des enceintes étanches, équipées de moyens de régénération de l’atmosphère (absorbeurs de CO2 et bouteilles d’oxygène) et de régulation de l’ambiance thermique (climatiseur, absorbeur d’humidité). Elles sont généralement conçues pour assurer un maintien en sécurité pendant au moins 24 heures.

Pour être acceptables sur une telle durée de 24 heures, les conditions d’ambiance thermique dans la cellule de survie doivent être le plus proche possible des conditions de la neutralité thermique.

C’est dans ces conditions que :

- les mécanismes de régulation thermique sont sollicités à leur minimum,
- les pertes hydriques sont minimales,
- la fatigue physique due à une augmentation de la température corporelle et à la déshydratation est minimale,
- la perte de vigilance due à ces mêmes facteurs est également minimale.

De cette manière, l’évacuation future pourra être réalisée dans les meilleures conditions de sécurité.

Ces conditions d’ambiance thermique peuvent être qualifiées au moyen de l’indice de confort thermique PMV (Norme NF X35-203 – NF EN ISO 7730).

On considère ainsi que les personnes présentent dans la cellule de survie :

- ont une activité métabolique identique à celle d’une personne assise au repos (55 W/m²)
- peuvent se dévêtir partiellement de leur équipements de protection (veste de chantier, casque, gants, bottes) et conservent un pantalon et T-shirt ou veste légère (Isolation vestimentaire = 0,8 Clo)

On néglige une augmentation de la température de la paroi interne de la cellule de survie qui pourrait être due à une augmentation de la température de l’air du tunnel consécutive par exemple à un arrêt des systèmes de ventilation ou à un incendie.

Le tableau suivant donne les valeurs correspondantes de l’indice PMV en fonction de l’hygrométrie relative régnant dans la cellule de survie (entre 5 et 95%) à 4 températures ambiantes différentes (30°C, 28°C, 26°C et 24°C).

<table>
<thead>
<tr>
<th>Température ambiante</th>
<th>PMV</th>
<th>Intervalle d’humidité relative compatible avec des conditions acceptables</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR = 10%</td>
<td>HR = 30%</td>
</tr>
<tr>
<td>30°C</td>
<td>1,15</td>
<td>1,39</td>
</tr>
<tr>
<td>28°C</td>
<td>0,48</td>
<td>0,69</td>
</tr>
<tr>
<td>26°C</td>
<td>-0,19</td>
<td>0,00</td>
</tr>
<tr>
<td>24°C</td>
<td>-0,85</td>
<td>-0,68</td>
</tr>
</tbody>
</table>

La température ambiante offrant la plage la plus étendue de conditions d’ambiance thermique acceptable est donc proche de 26°C. (Idéalement température comprise entre 25,4°C et 25,6°C pour se situer dans la plage de confort quel que soit l’humidité relative).

La contrainte thermique peut être précisée en utilisant la norme NF EN ISO 7933 (X 35-204) « Détermination analytique et interprétation de la contrainte thermique fondées sur le calcul de l’astreinte thermique prévisible.

Cette norme permet notamment de déterminer les pertes hydriques nécessaires à un maintien d’un bilan thermique équilibré.

<table>
<thead>
<tr>
<th>Température ambiante</th>
<th>Perte hydrique horaire</th>
<th>Perte hydrique cumulée sur 24h</th>
</tr>
</thead>
<tbody>
<tr>
<td>30°C</td>
<td>130 g/h</td>
<td>3,12 litres</td>
</tr>
<tr>
<td>28°C</td>
<td>90 g/h</td>
<td>2,16 litres</td>
</tr>
<tr>
<td>26°C</td>
<td>60 g/h</td>
<td>1,44 litres</td>
</tr>
<tr>
<td>24°C</td>
<td>30 g/h</td>
<td>0,72 litres</td>
</tr>
</tbody>
</table>
Dans les creusements de galeries en méthode traditionnelle à l’explosif, il conviendra de :

Assurer une ventilation correcte de la galerie :

La ventilation mise en œuvre pour assurer un air suffisamment sain (Cf. recommandation Cnam R494) permet généralement d’assurer l’évacuation des calories et de l’humidité générées par l’activité.

Une attention particulière devra cependant être apportée à la ventilation de la zone du front de taille. Dans les configurations rencontrées, le soufflage placé en retrait fait souvent de cette zone, une zone sous-ventilée.

Ceci est particulièrement sensible pour la phase de marinage.

N’utiliser que des engins à cabine fermée et climatisée :

La climatisation est primordiale afin d’assurer des conditions de travail satisfaisantes aux conducteurs des engins.

Pour les engins de marinage, cette disposition est indispensable compte tenu de la chaleur particulièrement importante dégagée par l’activité intense de ces machines.

Pour les autres engins (foratrice, projeteuse de béton, pelle hydraulique), une cabine fermée et climatisée est souhaitable :

- **foratrice :** cette machine génère des niveaux de bruit élevé, une cabine fermée, insonorisée et climatisée est donc fortement recommandée
- **projeteuse de béton :** compte tenu des niveaux sonores élevés et de la poussière générée par la projection de béton, une cabine fermée insonorisée équipée d’une filtration ad hoc et d’une climatisation est recommandée
- **pelles hydrauliques :** des niveaux sonores élevés et, éventuellement, de la poussière sont générés. Une cabine fermée insonorisée équipée d’une filtration ad hoc et d’une climatisation est souhaitable.

Les commandes de la climatisation devront être simples et explicites, notamment au niveau de la température souhaitée dans la cabine.

Les systèmes de climatisation devront être régulièrement entretenus, notamment au niveau des filtres dont ils seront équipés.

Les cabines des engins elles-mêmes devront être régulièrement entretenues : entretien des mécanismes de fermeture des portes, joints des ouvrants, vitrages (remplacer immédiatement les vitrages endommagés).
Creusement au tunnelier

Pour les opérations de creusement au tunnelier :

Assurer une ventilation suffisante :

La ventilation mise en œuvre doit permettre d’évacuer les calories générées par le tunnelier ainsi que par le sous-sol, de manière à éviter une élévation importante de la température ambiante.

Il convient ainsi de ne pas dépasser une température d'environ 25°C (pour une activité physique modérée) à 22°C (pour une activité physique soutenue) afin de conserver des conditions thermiques satisfaisantes pour la majorité des opérateurs.

Le débit d’air à insuffler au niveau du tunnelier doit donc être déterminé comme étant au moins égal au débit permettant d’évacuer la chaleur dégagée par le tunnelier en fonctionnement et celui dégagé par le terrain dans lequel le tunnelier évolue.

En première approximation :

\[
Q_{tunnelier} + Q_{sous-sol} = D_b \cdot \rho \cdot C_p \cdot (T_{amb} – T_e)
\]

- \(Q_{tunnelier}\) : chaleur dégagée par le tunnelier
- \(Q_{sous-sol}\) : chaleur dégagée par le terrain (variable selon la couverture)
- \(D_b\) : débit de ventilation
- \(\rho\) : masse volumique de l'air
- \(C_p\) : chaleur spécifique de l'air
- \(T_{amb}\) : température à ne pas dépasser sur le tunnelier
- \(T_e\) : température de soufflage (= T extérieure corrigée des pertes le long de la canalisation avant les bouches de soufflage)

Les arrivées d’air frais seront principalement disposées au niveau des zones de travail des opérateurs.

Réduire les déperditions thermiques du tunnelier :

Tous les organes chauffants du tunnelier doivent recevoir une isolation thermique de manière à réduire les apports thermiques, dans la mesure où ce type de traitement est compatible avec le mode de fonctionnement de l’organe en question.

Capter la chaleur au plus près :

Les sources de chaleur les plus importantes devront faire l’objet d’un captage au plus près.

Il s’agira de capoter ces sources et de réaliser une ventilation adéquate de ces encoffrements. A défaut d’encoffrement, on pourra selon les possibilités, installer une hotte d’extraction au-dessus de la source de chaleur.

L’air chaud ainsi capté sera rejeté dans le conduit d’extraction de la ventilation de la galerie.
Chantier d’aménagement de cavernes souterraines

Assurer une ventilation correcte de la caverne :

La ventilation mise en œuvre permet a priori d’assurer l’évacuation des calories et de l’humidité générées par l’activité.

Une attention particulière devra cependant être portée aux emplacements de travail confinés, comme les zones de coffrage de dalles. Ces espaces apparaissent en effet comme des zones sous ventilées. Une ventilation additionnelle locale pourrait y être installée lors des opérations nécessitant une activité physique importante de manière à éviter l’inconfort thermique et l’accumulation éventuelle de polluants (poussières et autres), notamment durant les phases de pose du coffrage et de décoffrage.

N’utiliser que des engins à cabine fermée et climatisée :

La climatisation est primordiale afin d’assurer des conditions de travail satisfaisantes aux conducteurs des engins.

Pour tous les engins intervenant sur le chantier, des cabines fermées insonorisées équipées d’une filtration ad hoc et d’une climatisation sont souhaitables.

Les commandes devront être simples et explicites, notamment au niveau de la température souhaitée dans la cabine.

Les systèmes de climatisation devront être régulièrement entretenus, notamment au niveau des filtres dont ils seront équipés.

Les cabines des engins elles-mêmes devront être régulièrement entretenues : entretien des mécanismes de fermeture des portes, joints des ouvrants, vitrages (remplacer immédiatement les vitrages endommagés).

Mise en place du soutènement

Pour les opérations de soutènement :

Assurer une ventilation suffisante :

La ventilation mise en œuvre doit permettre d’évacuer la pollution et les calories générées par les installations et les engins.

Il convient de se baser sur les recommandations de la R494.

Toutefois, il conviendra de s’assurer que l’ensemble du chantier sera correctement ventilé, notamment les zones placées en amont des installations de coffrage aussi bien en galerie principale que dans les rameaux.

Coffrage de paroi – Tunnel du Chat
Pour réaliser cela, le soufflage de l’air neuf devrait se faire derrière ces installations et non pas devant comme mis en place sur ce chantier.

Les schémas suivant illustrent ce principe dans le cas d’un tunnel de petite dimension où l’extraction est réalisée par la galerie.

Situation existante :

Situation recommandée :

Lorsque la dimensions des galeries le permettent, il conviendra de mettre en place, dans les mêmes conditions, des gaines d’extraction d’air conformément aux règles de la recommandation R494.

Nota : Cellules de survie

Dans une cellule de survie, la température ambiante offrant des conditions d’ambiance thermique acceptables quelle que soit l’humidité relative est de 25,5°C.

Nous recommandons donc une régulation de température comprise entre 25 et 26°C avec un contrôle de l’hygrométrie (inférieure à 80%).

La cellule de survie devra donc être équipée d’une climatisation suffisamment puissante et de batteries en rapport pour assurer ce niveau de température durant un temps suffisant.

Organisation du travail

Les conditions d’ambiance thermique impliquent une organisation de travail qui permette aux opérateurs de faire très régulièrement des pauses et de s’écarter des sources de chaleur afin de se réhydrater.

Ces pauses devront être prises dans un local à température modérée avec mise à disposition de boissons.
L’arrêté du 14 novembre 1989 relatif à la durée maximale du travail journalier dans les chantiers chauds, prévoit des durées limites de travail à appliquer en fonction de la température ambiante du chantier (Cf. tableau ci-contre).

Cependant cette recommandation est peu précise et comporte une part d’empirisme. Les termes qu’elle emploie sont définis dans le décret n° 88-1027 du 7 novembre 1988 auquel l’arrêté renvoie : une atmosphère est considérée « sèche » lorsque l’humidité relative est inférieure à 50 % et « humide » lorsque l’humidité relative est supérieure à 50%. La température caractéristique est calculée en fonction de la température sèche, de la température humide et de la vitesse d’air selon la formule empirique

\[T_c = 0,3 \times T_s + 0,7 \times T_h - V. \]

Le décret précise dans sa circulaire d’application que les limites sont calculées pour une activité de 300 W (soit 163 W/m²) et pour une perte hydrique de 4 litres/jour. Mais il ne donne aucune indications sur la tenue de travail.

Les valeurs obtenues par cette méthode sous-estiment très largement le risque en permettant des expositions beaucoup plus longues que la norme ISO 7333.

La méthode la plus fiable actuellement reconnue pour estimer la contrainte est l’utilisation de la Norme ISO 7933 PHS – Stress à la chaleur prévisible.
Cette analyse indique que les valeurs de l’arrêté du 14-11-1989 ne peuvent pas être prises comme référence universelle. Ce sont tout au plus un point de repère pour graduer la contrainte qui peut être rencontrée sur les chantiers.

Si l’on désire caractériser correctement la contrainte et la limite de durée de travail, il convient de réaliser une analyse sur la base de la norme ISO 7933 en prenant en compte l’ensemble des paramètres (métabolisme, habillement, courant d’air, rayonnement, Température de l’air et humidité).

<table>
<thead>
<tr>
<th>Limite</th>
<th>Gêne sans risque pour la santé</th>
<th>Pas de limitation de travail</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHS 3</td>
<td>Contrainte à long terme : gêne et risque pour la santé après plusieurs heures d’exposition</td>
<td>Limite par perte hydrique excessive</td>
</tr>
<tr>
<td>PHS 3</td>
<td>Contrainte à long terme : gêne et risque pour la santé après plusieurs heures d’exposition</td>
<td>Limite par température interne >38°C</td>
</tr>
<tr>
<td>PHS 4</td>
<td>Contrainte à court terme : risque pour la santé après 30 à 120 minutes d’exposition</td>
<td>Limite par température interne >38°C</td>
</tr>
</tbody>
</table>
BIBLIOGRAPHIE

Réglementation nuisances physiques.
Une approche commune.
ED 6128. INRS, 2012.

NORME ISO 7730:2005
Ergonomie des ambiances thermiques —
Détermination analytique et interprétation du
confort thermique par le calcul des indices PMV
et PPD et par des critères de confort thermique
local - 2005-11 - Comité technique ISO/TC 159/
SC 5 Ergonomie de l’environnement physique

NORME ISO 7933:2004
Ergonomie des ambiances thermiques —
Détermination analytique et interprétation de
la contrainte thermique fondées sur le calcul
de l’astreinte thermique prévisible - 2004-08 -
Comité technique ISO/TC 159/SC 5 Ergonomie
de l’environnement physique

Travailler dans une ambiance thermique chaude
Dossier INRS – TC165 Références en santé au
travail – N°158 – juin 2019